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Abstract. In semiconductor theory, applying the kp-method to the monodimensional Schrödinger
equation leads to a symmetric perturbed eigenvalue problem (Kane E O 1967 The kp method
Semiconductors and Semimetals (New York: Academic) p 75), i.e. to the diagonalization of a matrix
A(ε) depending on a small parameter ε, symmetric ∀ε ∈ R. The eigenelements of A(ε) admit
expansions in fractional powers of ε (Puiseux series). Usually, physicists solve this problem by
using Schrödinger perturbation formulae under some restrictive conditions, which make perturbed
eigenvector symbolic approximation impossible. This is illustrated by the modified Kane matrix
(Fishman G 1997 Quasi-cube et Würtzite: Application au GaN (Montpellier: École thématique du
CNRS)). To solve this problem completely from a symbolic computing point of view, we consider
the symmetric perturbed eigenvalue problem in the case of analytic perturbations (Baumgärtel H
1985 Analytic Perturbation Theory for Matrices and Operators (Basle: Birkhauser), Kato T 1980
Perturbation Theory For Linear Operators (Berlin: Springer)). We first review the classical
characteristic polynomial approach, showing why it may be not optimal. We also present a direct
matricial algorithm (Jeannerod C P and Pflügel E 1999 Int. Symp. on Symbolic and Algebraic
Computation (Vancouver, Canada, July 1999) (New York: ACM) pp 121–8): transforming the
analytic matrix A(ε) into its so-called q-reduced form allows to recover the information we need
for the eigenvalues. This alternative method, as well as the classical one, can be described in terms of
the Newton polygon. However, our approach uses only a finite number of terms ofA(ε) and is more
suitable for large matrices and a low approximation order. Besides, we show that the q-reduction
process can simultaneously provide symbolic approximations of both the perturbed eigenvalues
and eigenvectors. The implementation of this algorithm in MAPLE is used to diagonalize the
modified Kane matrix up to a given order.

1. Introduction

Eigenvalue problems arise naturally in many physical and mathematical applications. One of
the physical fields where they are most encountered is quantum mechanics. When addressing
the question of determining the stationary states of an electron-like particle in a quantum
well of semiconductors (SCs), one has to solve a Schrödinger equation, i.e. compute the
eigenelements of an Hamiltonian operator H0. The Schrödinger equation studied therein
will be supposed to be monodimensional and stationary. The crystalline structure of SCs is
periodic and the wavefunctions and energies of the particle depend on a real parameter k.
The Hamiltonian Hk can be written as the sum of H0 and of a perturbative part, which is
polynomial in k. The kp-perturbation theory [8] leads to a matricial representation of operator
Hk . Projecting operator Hk on a finite-dimension basis yields a quadratic polynomial matrix
H(k) = H0 +H1k +H2k

2, which is symmetric for all k real: H ∗(k) = H(k),∀k ∈ R. We are
therefore led to the diagonalization ofH(k), that is, assuming that k is in some neighbourhood
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of zero, to the resolution of a symmetric perturbed eigenvalue problem [9, p 120]. This mainly
consists of determining the first terms of the k-expansions of both the perturbed eigenvalues
and eigenvectors of H(k).

The traditional way physicists solve this problem is based on the Schrödinger perturbation
theory [3, 2, p 102] which approximates these k-expansions up to any order q ∈ N under
some restrictive conditions on the relative size of the matrix elements [10]. The Schrödinger
formulae have been used to approximate up to order q = 2 the perturbed eigenvalues of a
particular H(k) matrix, known as the modified Kane matrix [5]. Yet, Schrödinger conditions
imply a simplification of the initial problem Hk , which does not allow us to derive truncated
k-expansions for the corresponding perturbed eigenvectors. Thus, to approximate both the
perturbed eigenvalues and eigenvectors of the matrixH(k) corresponding to the actual operator
Hk , a more general approach is needed.

The problem of the change of the eigenelements of a matrix under small perturbations
has been widely studied [2,9,16]. In general, the perturbations considered are not polynomial
but analytic perturbations. Besides, the small parameter k being an indeterminate, computer
algebra is particularly suitable for an algorithmic approach. The central tools we will use are
the so-called Newton polygon of an analytic matrix [2, p 411], together with its associated
Newton polynomials. Their computation gives for each perturbed eigenvalue the first-order
term of its k-expansion. Having determined this first-order term, one may recursively get the
following terms up to any order. Then, in the symmetric case, the corresponding perturbed
eigenvector can be approximated up to any order by using some recurrence formulae.

To determine both the Newton polygon and its associated Newton polynomials, the
classical method consists of computing the characteristic polynomial χ(k, λ) = det(λI −
H(k)) of H(k) and solving the algebraic equation χ(k, λ) = 0. However, the computation of
the characteristic polynomial of a matrix depending on a parameter may become dramatically
time consuming when the dimension of the matrix and/or the degree of the perturbation
increase(s) (see [1] for a discussion). Moreover, although there exists an efficient algorithm to
solve χ(k, λ) = 0 in the case of polynomial perturbations [15], analytic perturbations cannot
be dealt with.

Another method is proposed, which aims at simultaneously approximating both the
perturbed eigenvalues and eigenvectors of a symmetric analytic matrix H(k), without
computing the characteristic polynomial of H(k). The main idea is to transform H(k) by
means of invertible polynomial matrices into what we will call a block-diagonal q-reduced
form, from which the Newton polygon and the Newton polynomials can be immediately
retrieved. If H(k) is already in q-reduced form, only the first q + 1 terms of this matrix series
will be used to reach approximation order q. Otherwise, a lazy evaluation process allows the
block-diagonal q-reduction process to use only a finite minimum number of terms of the matrix
series. It is also shown that when H(k) is symmetric then approximations of the perturbed
eigenvectors are contained in the transformation matrices. The resulting algorithm has been
implemented in a MAPLE package called pert.

We begin our paper presenting the physics of the problem and the kp-perturbation theory
in section 2.1. We then review the way the perturbed eigenelements are usually computed
in section 2.2, illustrating the method with the modified Kane matrix. Section 3 covers the
more general symmetric perturbed eigenvalue problem in the case of analytic perturbations.
In section 3.1 we review how this problem can be solved algorithmically using computer
algebra. Section 3.2 addresses the classical algebraic approach based on the computation of
the characteristic polynomial, and recalls how this allows us to draw the Newton polygon.
MAPLE examples are worked out in section 3.3. Section 4 presents our purely matricial
method. Section 4.1 states the main property of the q-reduced form in terms of the Newton
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polygon and of the Newton polynomials. In section 4.2 we provide some details about the
approximation of perturbed eigenvectors, yielding our so-called ‘q-reduced form-enhanced
algorithm’ (section 4.3). Finally, section 4.4 illustrates the use of the pert package by
providing an approximated diagonalization of the modified Kane matrix.

2. A perturbed eigenvalue problem in quantum physics

This section is devoted to the derivation of a symmetric perturbed eigenvalue problem from
the Schrödinger equation in the context of SCs. Projecting that equation on a finite-dimension
vector space yields the modified Kane matrix [5,8]. We concentrate on the computation of the
expansions of its eigenelements.

2.1. On the kp-perturbation theory

We aim at determining the states of a particle trapped in a quantum well, defined by the
juxtaposition of SCs. Physically, this means that the particle is surrounded by a potential
V = V∼ + V�, where V∼(x) is periodic, reflecting the crystalline structure of the solid. The
potential V�(x) is a confining potential, typically

V�(x) =
{

0 if x �∈ [−x0, x0]

−V0 otherwise

with x0 and V0 positive constants.
We denote H0 the Hamiltonian operator

H0 :
L2(R) −→ L2(R)

u(x) 
−→
(

p2

2m0
+ V∼(x)

)
u(x)

(
p = −ih̄

d

dx

)
. (1)

For the particle, the monodimensional stationary Schrödinger equation is therefore

(H0 + V�)u = λu (2)

where λ is the energy of the particle (eigenvalue of H0 + V�) and u(x) is its wavefunction
(associated eigenvector).

A classical method to solve the eigenvalue problem (2) may be found in [8], in the context
of the following assumption.

Assumption 1. The lowest eigenvalue of H0 + V� is in the neighbourhood of the lowest
eigenvalue of H0.

Under this assumption a first step is to work on the eigenelements of H0 = p2/2m0 + V∼.
V∼ being periodic, the Bloch theorem may be applied: the eigenfunctions of H0 are of

the form

vk(x) = eikxψ(x) (3)

with k any real number and ψ(x) a function of x with the same periodicity as the periodicity
of the crystal. The problem being periodic, we restrict the study of vk to the first Brillouin
zone: we want to describe the behaviour of vk (and its associated eigenvalue �k) when k is in
some neighbourhood of zero.

According to (3), one has

p2

2m0
vk(x) = eikx

(
p2

2m0
+
h̄

m0
kp +

h̄2

2m0
k2

)
ψ(x)
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and equation H0vk = �kvk becomes

Hkψ = �kψ (4)

with

Hk = H0 + k2
0 +

h̄

m0
kp k2

0 =
h̄2

2m0
k2.

Operator Hk can thus be seen as a perturbation of operator H0 + k2
0 by kp. To deal with

problem (4) we assume that we know an orthonormal basis {ψi}i=1...n of n eigenfunctions
at k = 0 (associated with the n eigenvalues at k = 0) of operator p2/2m + V∼ that are of
fixed parity. (The orbitals may typically be s- or p-like.) This basis is chosen by the physicist
depending on the description of the crystal he wants to give.

We then project operator Hk on the finite-dimension vector space generated by the ψis

〈ψi |Hkψj 〉 = λjδij + k2
0δij +

h̄

m0
k〈ψi |pψj 〉 (i, j = 1, . . . , n).

Taking V� into account means simply adding a Qij = 〈ψi |V�ψj 〉 term to 〈ψi |Hkψj 〉.
Writing Pij = h̄

m0
〈ψi |pψj 〉 and using the parity of the ψis which yields Pii = 0,∀i and

Pji = P̄ij ,∀i �= j , we get the n× n symmetric matrix

H(k) = Q +


 λ1 + k2

0 (kPij )

. . .

(kP̄ij ) λn + k2
0


 (5)

whose eigenelements are to be computed: we are therefore led to the diagonalization of a
matrix depending on a small parameter k.

2.2. Computation of the eigenelements

The usual way the eigenvalue expansions of H(k) are computed is to use the Schrödinger
perturbation formulae. The effective mass concept then only allows us to approximate the
perturbed eigenvectors numerically, but not to approximate their k-expansions.

The second-order perturbation formula, obtained by Schrödinger, gives [3, 2, p 103]

λi(k) = λi +
∑
j �=i

H 2
ij

λi − λj k
2 + o(k2). (6)

This allows us to simply derive from the matrix H(k) the expressions for the eigenvalues.
However, to be valid, (6) must satisfy the following assumption.

Assumption 2 ([10]). ∀i �= j |Hij | < |λi − λj |.
One can show that this condition holds for the matrixH(k) if and only if the constant matrixQ
is disregarded, i.e. the confining potential V�(x) is neglected in the Hamiltonian. For example,
using this method and disregarding Q, Kane [8] gets for SCs GaAs and AlAs the matrix H(k)
(modified by Fishman [5])


3
2 + a1k

2 0 a2k 0 a3k 0 0 0
0 3

2 + a1k
2 0 a2k 0 −a3k 0 0

a2k 0 a4k
2 0 a5k

2 0 0 0
0 a2k 0 a4k

2 0 −a5k
2 0 0

a3k 0 a5k
2 0 − 17

50 + a6k
2 0 0 0

0 −a3k 0 −a5k
2 0 − 17

50 + a6k
2 0 0

0 0 0 0 0 0 a7k
2 0

0 0 0 0 0 0 0 a7k
2




(7)
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with

a1 = 11 049
1000 = 11.05 a2 = 87 368

10 751 = 8.13 a3 = 119 299
20 761 = 5.75

a4 = 6225 377
2941 123 = 2.12 a5 = 48 704

5729 = 8.50

a6 = − 817 954
210 019 = 3.89 a7 = − 4953

500 = 9.91.

In [5] Fishman computes the six nontrivial eigenvalue expansions of the modified Kane
matrix (7) up to order 2 using the Schrödinger formula (6)

λ1,2(k) = 1.5 + 73.02k2 + o(k2), (8a)

λ3,4(k) = −41.91k2 + o(k2), (8b)

λ5,6(k) = −0.34− 21.84k2 + o(k2). (8c)

One could also compute the perturbed eigenvectors up to order 2 with some appropriate
Schrödinger perturbation formulae. However, while highly influencing them, the confining
potentialV� has been so far disregarded, because it preventsH(k) from fulfilling assumption 2.

The former computation of the eigenvalues will therefore be used only as a starting point.
The effective mass method is used to go further: neglecting the confining potential means that
we are actually treating the case of a free particle in a periodic potential. The spectrum of the
Hamiltonian corresponding to a free particle is

λ(k) = − h̄2

2m0
k2. (9)

Thus, comparing (9) with, say, (8a), one may infer that the particle in the periodic potential
behaves as if it were a free particle of mass m∗0 defined by

73.02k2 = −h̄
2

2m∗0
k2.

m∗0 is called the effective mass of the particle in the SCs (for a given energy). Now, to compute
an energy and its corresponding wavefunction of that particle in the confining potential one
has to solve another Schrödinger equation(

p2

2m∗0
+ V�(x)

)
v(x) = λ∗v(x). (10)

This second equation may be solved by any classical numerical method, among which
variational techniques, or by discretizing the equation and using Lanczos-like algorithms to
compute the eigenelements of the resulting matrix. Thus, the effective mass concept allows
us to isolate the action of the periodic potential (taken into account by m∗0 defined via the
kp-theory) from the action of the confining potential. However, this requires the numerical
resolution of as many Schrödinger equations of type (10) as the number of distinct eigenvalues
of H(k).

Remark. The only reason why we do not take Q into account directly into the perturbation
formulae is assumption 2. Therefore, a perturbative approach other than Schrödinger’s method,
which would not rely on some numerical approximations, could allow us to directly take the
matrix Q (that is to say, the confining potential) into account, without having to resort to the
effective mass theory.

In what follows we therefore focus on the search for eigenvalue and eigenvector expansions
of the matrix H(k) (with or without the Q matrix) through such direct methods.
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3. The symmetric perturbed eigenvalue problem

We first recall some notions about the symmetric perturbed eigenvalue problem in the case of
analytic perturbations (the small parameter kwill now be denoted by ε). We then briefly explain
why the main problem actually consists of building a Newton polygon, which traditionnally
results from the computation of the characteristic polynomial of the matrix. Some existing
MAPLE functionalities, based on such a computation, are also presented.

3.1. An algorithmic view of the problem

LetF denote the ring of complex analytic functions of the real variable ε in some neighbourhood
of zero. LetA(ε) ∈ Fn×n. The matrixA(ε) is said to be analytic (in ε = 0) and can be written

A(ε) =
∞∑
k=0

Akε
k (∀k � 0, Ak ∈ Cn×n).

We want to compute the eigenelements of A(ε), i.e. λ(ε) and ψ(ε) �= 0 satisfying

A(ε)ψ(ε) = λ(ε)ψ(ε)
whereA0 is supposed not to vanish identically. Moreover, εmay be seen as a small perturbative
parameter and the analytic perturbation theory for linear operators [2] allows us to consider
A(ε) as an analytic perturbation of A0. It is then well known [2, p 351, 9, p 65] that each
eigenvalue or eigenvector of A(ε) admits an expansion in fractional powers of ε (Puiseux
series), whose zeroth-order term is an eigenvalue or an eigenvector of the unperturbed matrix
A0.

For our application, A(ε) is supposed to be symmetric for all ε real, that is A∗(ε) =
A(ε),∀ε ∈ R. In this case, the eigenelements of A(ε) are analytic functions of
ε [2, p 21, 9, p 120]. Thus, all the powers of ε involved in these expansions are integers:

λ(ε) = λ0 +
∞∑
k=1

λkε
k ψ(ε) = ψ0 +

∞∑
k=1

ψkε
k (11)

with λ0 and ψ0 such that A0ψ0 = λ0ψ0. We call valuation of the eigenvalue λ(ε) (resp. the
eigenvector ψ(ε)) the smallest power of ε that appears in the expansion of λ(ε) (resp. ψ(ε)).
This definition also applies to the eigenvector ψ(ε). To compute an approximation of λ(ε)
and ψ(ε) up to order q ∈ N, one rewrites λ(ε) as

λ(ε) = µεβ + o(εβ) µ ∈ C β ∈ N.

This yields the following sketch of an algorithm:

1.1 Compute µ and β (β � q);
1.2 While β < q call step 1.1 with A(ε)− µεβI ;

The result is λ(q)(ε) such that λ(ε) = λ(q)(ε) + o(εq). A corresponding eigenvector (of
valuation zero) may then be approximated up to order q by solving

(A(ε)− λ(q)(ε)I )ψ(q)(ε) = o(εq)

or, equivalently, by taking the step
1.3 Solve

k∑
j=0

(Aj − λ(q)j I )ψ
(q)

k−j = 0 (∀k = 0, . . . , q). (12)

The main difficulty is thus to determine the leading exponent β and the associated leading
coefficient µ for each eigenvalue of A(ε).
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3.2. The classical algebraic approach

Let χ(ε, λ) = det(λI − A(ε)) be the characteristic polynomial of A(ε). It satisfies

χ(ε, λ) = λn + α1(ε)λ
n−1 + · · · + αn−1(ε)λ + αn(ε)

and consists of a polynomial in λ, with analytic coefficients

αi(ε) = α̂iεai + o(εai ) (i = 1, . . . , n)

where ai is the leading exponent and α̂i the leading coefficient of αi(ε) (i.e. α̂i �= 0 and no term
of order lower than ai appears in the expansion of αi(ε)). The solutions of χ(ε, λ) = 0 are the
eigenvalues λ(ε) = µεβ + o(εβ) of A(ε). An easy way to find the first-order term µεβ is to
associate with χ(ε, λ) its so-called Newton polygon (also known as Puiseux–Newton diagram
and denoted N ). This is defined as follows. We plot the values ai versus i for i = 1, . . . , n
together with the point (0, 0) corresponding to λn (if αi(ε) = 0, the corresponding point is
disregarded). Then we draw the segments on the lower boundary of the convex hull of the
plotted points. These segments constitute the Newton polygon N associated with χ(ε, λ) or,
equivalently, the Newton polygon ofA(ε) (see [12] for examples in the general nonsymmetric
case). Let Ss be the segment of N whose slope is s (s ∈ Q+). One can associate with Ss the
so-called Newton polynomial ps(λ) such that [2, 12]

ps(λ) =
∑

(i,ai )∈Ss
α̂iλ

n−i . (13)

Knowledge of the Newton polynomials is crucial, because they have the following property.

Proposition 1 ([2, section A.7, 12, section 3]). A(ε) has exactly m eigenvalues of the form
λ(ε) = µεβ + o(εβ) iff µ is a root of the Newton polynomial pβ(λ) of multiplicity m.

In particular, this means that the slopes of the Newton polygon of A(ε) are exactly the
exponents of the leading terms of the perturbed eigenvalues. Also, A(ε) being symmetric,
then, according to (11), its Newton polygon consists of integer slopes only.

Examples.

(i) Let A(ε) be the following singular matrix of dimension 5:

A(ε) =




1 + ε ε ε

ε ε2

ε ε2 + ε3

ε3


 .

One has χ(ε, λ) = λ5 − (1 + ε + 2ε2 + 2ε3)λ4 + (4ε3 + 3ε4 + 3ε5 + ε6)λ3 + (ε4 − ε5 −
4ε6 − 2ε7 − ε8)λ2 − (ε7 − ε8 − ε9)λ. The Newton polygon N of A(ε) is represented in
figure 1 and (13) gives three Newton polynomials

p0(λ) = λ4(λ− 1) p2(λ) = −λ2(λ2 − 1) p3(λ) = λ(λ− 1).

Proposition 1 says then that the eigenvalues of A(ε) belong to

{1 + o(1),±ε2 + o(ε2), ε3 + o(ε3)}.
The infinite slope of N corresponds to the (simple) eigenvalue 0 of A(ε).
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Figure 1. Newton polygon for example (i). Figure 2. Newton polygon for example (ii): the modified
Kane matrix.

(ii) Let A(ε) be the modified Kane matrix (7). The computation of χ(ε, λ) gives

χ(ε, λ) = λ8 + (α̂1 + o(1))λ7 + (α̂2 + o(1))λ6 + (α̂3 + o(1))λ5 + (α̂4 + o(1))λ4

+(α̂5ε
2 + o(ε2))λ3 + (α̂6ε

4 + o(ε4))λ2

+(α̂7ε
6 + o(ε6))λ + α̂8ε

8 + o(ε8)

with α̂i , i = 1, . . . , 8, some nonzero rational numbers. Hence we have the Newton
polygon in figure 2 and two Newton polynomials p0(λ) = λ4(λ4 + α̂1λ

3 + α̂2λ
2 + α̂3λ+ α̂4)

and p2(λ) = α̂4λ
4 + α̂5λ

3 + α̂6λ
2 + α̂7λ + α̂8 whose nonzero roots are to be computed

(for the moment, all we can say is that A(ε) has four eigenvalues of valuation 0 and four
eigenvalues of valuation 2).

In practice, computing χ(ε, λ) allows us to build the Newton polygon ofA(ε), to compute
its Newton polynomials according to (13) and hence to get µ and β for every eigenvalue of
A(ε). Reinserting λ + µεβ into the expression of χ(ε, λ) will lead to the next terms of the
Puiseux series. More precisely, steps 1.1 and 1.2 of the algorithm become

2.0 Compute χ(ε, λ) = det(λI − A(ε)) and v← 0;
2.1 Draw the segments of N of slope s ∈ [v, q] and compute the associated pss,

The nonzero roots µsjs of the pss give all the first-order terms µsjs ε
s ;

2.2 For each s and for each sj do
if s < q then v← v + 1 and call step 2.1 with χ(ε, λ + µsjs ε

s);

Steps 2.1 and 2.2 are traditionally referred to as the Newton method to solve algebraic
equations. The first effective use of this method in computer algebra is due to Duval and may
be found in [4]. The next section illustrates how this approach can be used in practice, and
briefly discusses its limitations.

3.3. Using some MAPLE functionalities

The MAPLE built-in function linalg[eigenvals] computes χ(ε, λ) = det(λI − A(ε))

and tries to find the exact solutions λ(ε) of the algebraic equation χ(ε, λ) = 0. Unless
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χ(λ, ε) factors (with respect to λ) into linear or quadratic factors, either the exact roots are
messy (cubic or quartic factors), or there is no way to express them in terms of exact radicals
(quintic or higher-degree factors). In both cases, the results produced will be of very limited
use, even for matrices of small dimension (<5) and perturbations of small degree (=1) (e.g.,
see [11]). Using linalg[eigenvects] or the existing functions computing the symbolic
Jordan canonical form to get both the perturbed eigenvalues and eigenvectors of A(ε) would
be worse. For problems of higher dimension, such as the modified Kane matrix, and more
generally in the case of polynomial perturbations, one may use the puiseux function [15]. The
puiseux function is an efficient implementation of steps 2.1 and 2.2. It computes the Puiseux
expansions (for ε in some given neighbourhood) of the roots of the irreducible factors ofχ(ε, λ)
up to any prescribed order q. This means that it allows us to approximate the eigenvalues of
A(ε) up to order q. Here we give an example with the modified Kane matrix (7), ε in some
neighbourhood of zero and q = 2. The berkosam procedure implements an improved version
of the Berkowitz algorithm to compute the characteristic polynomial of A(ε). It is faster than
linalg[charpoly] ([1, p 29]).

> with(share):
See ?share and ?share,contents for information about the share
library

> readshare(IntBasis,algebra):
> read modified_kane: # A:= the modified Kane matrix
> chi:=factor(berkosam(A,lambda)):
> chi2:= ...: with chi2 s.t. chi = (lambda-4953/500)ˆ2 * chi2ˆ2
> f:=RootOf(chi2,lambda):
> puiseux(f,epsilon=0,3);

{− 17
50 + 90 943 555 623 193 439

4164 021 419 571 754 ε
2, 3

2 + 1485 273 112 982 604 473 329
20 340 266 872 042 221 000 ε

2,− 42 741 506 602 974 173
1019 840 291 319 369 ε

2}
Therefore, expansions (7) can be computed automatically. Moreover, increasing q will

lead to more accurate approximations of the perturbed eigenvalues.
However, in the case of analytic perturbations, the puiseux command will fail to give

such approximations. Moreover, this algebraic approach demands the computation (and the
factorization) of the characteristic polynomial of A(ε), which is not optimal. Indeed, even
in the case of polynomial perturbations, the Newton polynomials required to approximate the
eigenvalues ofA(ε) up to order q depend only on a few terms ofA(ε). Hence, the characteristic
polynomial χ(λ, ε) of A(ε) contains in general much more information than those required to
determine all the Newton polynomials needed for our approximation. Since the computation
of χ(λ, ε) may become dramatically time consuming when the size of the matrix and/or the
degree of the perturbation increase(s), we want to avoid such a computation, i.e. avoid step 2.0,
and use as few terms of A(ε) as possible to perform steps 2.1 and 2.2.

Another drawback of the algebraic approach is that it says nothing about the perturbed
eigenvectors and some nontrivial additionnal work (taking step 1.3, see equation (5)) will be
necessary to actually diagonalize A(ε). Thus, the computer algebra functionalities used so far
solve the symmetric perturbed eigenvalue problem neither efficiently enough nor completely.

4. Empowering the classical approach with the q-reduced form

The q-reduced form of an analytic matrix is presented, which allows us to recover both the
Newton polygon and the Newton polynomials, without computing the whole characteristic
polynomial of the matrix. Moreover, in the symmetric case, it gives us approximations for
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the perturbed eigenvectors. The resulting algorithm has been used to diagonalize the modified
Kane matrix.

4.1. The q-reduced form

We use λ(ε) to denote the eigenvalues of A(ε). If we restrict ourselves to A0, all we can get
is the constant term of the expansions of the λ(ε). That classical result (see e.g. [9, p 65])
is exactly expressed by proposition 1 for β = 0. Hence, if 0 is a slope of N , A0 allows us
to compute the first Newton polynomial and p0(λ) = det(λI − A0). But for the eigenvalues
whose nonzero first-order term has a leading exponent greater than zero, all we can say is that
λ(ε) = o(1). To get this first-order term, say µεs(s ∈ N∗ is a slope of N ), one has to know
ps(λ) for which one should use more terms than A0. This can be done as described below.

Let us denote by vi the valuation of the ith column of A(ε), i.e. the smallest power of ε
appearing in the entries of this column (vi = +∞ in the case of a zero column). Let

Ds(ε) = diag(ε−min(0,vi−s))1�i�n.

Ds(ε) = Ds,0 + Ds,1ε + · · · is an n × n invertible polynomial matrix of valuation lower or
equal to s. Consequently, there exists Ns(ε) = Ns,0 + Ns,1ε + · · · ∈ Fn×n such that A(ε) can
be factored

A(ε) = εsNs(ε)D
−1
s (ε). (14)

Defining

θs(λ) = det(Ns,0 − λDs,0) (15)

one has the following proposition.

Proposition 2 ([7, p 123]). Suppose that θs �≡ 0. Then A(ε) has exactly m eigenvalues
λ(ε) = µεs + o(εs) iff µ is a root of θs(λ) of multiplicity m.

This means that if θs �≡ 0, θs equals the Newton polynomial ps within a monomial in λ.
The integer s is the slope of a segment of N iff θs has at least one nonzero root. Moreover, θs
depends only on A0, . . . , As by construction. With N0(ε) = A(ε) and D0(ε) = I , one finds
the classical case s = 0 again and θ0(λ) = det(A0 − λI) = (−1)np0(λ). Hence, if

θs �≡ 0 for all slope s of N (16)

all the Newton polynomials of A(ε) are given by (15). In the worst case, the computation will
require the first κ + 1 terms of A(ε) where κ ∈ N stands for the largest slope of N . Otherwise,
we propose to transform A(ε) into a particular form so that (16) is satisfied.

In [7] we define the so-called q-reduced form of a matrix A(ε) depending on parameter
ε. It is an adaptation to the algebraic case of the Moser- and super-reduced forms defined for
linear differential systems [6,13] and used for their symbolic resolution [14]. The equivalence
used is similarity in the field of meromorphic matrices: A(ε) and B(ε) are similar if and only
if there exists a meromorphic matrix T (ε) invertible ∀ε �= 0 so that T −1(ε)A(ε)T (ε) = B(ε).

By definition, A(ε) is in q-reduced form if it has a minimum number of columns of each
valuation lower or equal to q−1 among all the matrices similar toA(ε). An effective algorithm
to compute a polynomial similarity transformation P(ε) such that P−1(ε)A(ε)P (ε) is in q-
reduced form is also given. The practical interest of computing such a form comes from the
following property (reformulated here in the case of symmetric analytic matrices).

Proposition 3 ([7, p 123]). Let q ∈ N and A(ε) ∈ Fn×n be symmetric ∀ε ∈ R. A(ε) is in
q-reduced form iff θs �≡ 0,∀s � q.



Using computer algebra to diagonalize some Kane matrices 2867

Computing a q-reduced form ofA(ε)with q � κ therefore allows us to get all the Newton
polynomials. In practice, the value of κ being unknown, q will stand for the approximation
order and may be lower than κ .

4.2. Approximation of eigenvectors

Lemma 1 ([7, p 125]). Let q ∈ N and A(ε) ∈ Fn×n be symmetric ∀ε ∈ R. There exists
a similarity transformation T (ε) such that T −1(ε)A(ε)T (ε) is in q-reduced form and block-
diagonal. Also, the Newton polygon of each block consists of (part of) a segment of integer
slope.

Notice that although T −1(ε) may have poles, T −1(ε)A(ε)T (ε) will not, because of the
definition of a q-reduced form. Indeed, to compute such a form, we only allow to decrease
the number of columns of A(ε) with valuation lower than q > 0, which contradicts any pole
introduction.

Lemma 1 means that the Newton polygon ‘splits’ completely and that the first-order terms
of the eigenvalues of A(ε) can be separated:

T −1(ε)A(ε)T (ε) = diag(. . . , A1
s (ε), . . . , A

rs
s (ε), . . .)

where Aj
s (ε) is a block whose all eigenvalues are µsj εs + o(εs) (j = 1, . . . , rs and µsi �=

µsj ,∀i �= j ). Applying lemma 1 up to a given order—namely, s—yields the following
corollary. In the symmetric case, it allows for a direct approximation of the perturbed
eigenvectors of A(ε).

Corollary 1. Let j ∈ [1 . . . rs] be given and B(s)(ε) be the approximation up to order s of the
corresponding block Aj

s (ε) given by lemma 1. Let m be the size of Aj
s (ε) and µ = µsj . Then

A(ε) has exactly m eigenvalues whose first-order term is µεs and

T −1(ε)[A(ε)− µεsI ]T (ε) =



∗ · · · ∗
...

... (0)
∗ · · · ∗

(0) B(s)(ε)


 + o(εs) (17)

where o(εs) denotes an n× n matrix with entries of the form o(εs). Also, if A(ε) is symmetric
∀ε ∈ R, then B(s)(ε) = 0.

Proof. The left-hand side of (17) is diagonalizable ∀ε ∈ R. Thus the quantity B(s)(ε) + o(εs)
in the right-hand side is also diagonalizable ∀ε ∈ R.

Moreover, if κ− is the smallest slope of N , the valuation v of a q-reduced form with
q � κ− is greater or equal to κ−. Indeed, assume that v < κ−. All eigenvalues have a
valuation greater or equal to κ−, i.e. their leading coefficients µ satisfy

det(Avε
v + o(εv)− (µεκ− + o(εκ

−
))I ) = 0

ε �=0⇐⇒ det(Nv(ε)D
−1
v (ε)− εκ−−v(µ + o(1))I ) = 0

ε→0�⇒ θv(µ) = det(Nv,0) = 0 because κ− − v > 0.

This means that θv ≡ 0, v < κ− � q, which contradicts the fact that the matrix is q-reduced
(see proposition 3).

Thus, T −1(ε)A(ε)T (ε) being in q-reduced form and because of the splitting of N , the
valuation of B(s)(ε) is s. More precisely, B(s)(ε) = εsB with B nilpotent. Therefore,

B(s)(ε) + o(εs)

εs

∣∣∣∣
ε=0

= B
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is diagonalizable and nilpotent, i.e. B = 0. �
That implies that the last m columns of T (ε) (Xi (ε), i = 1, . . . , m), satisfy

A(ε)Xi (ε) = µεsXi (ε) + o(εs) (i = 1, . . . , m).

Hence, µεs being the approximation up to order s of m eigenvalues of A(ε), the Xi (ε) are
approximations up to order s − vi of the associated exact eigenvectors (vi ∈ N denotes the
valuation of vector Xi (ε)). Lastly, if vi = 0, Xi (ε) is normalized so thatA0Xi (0) = λ0Xi (0)
(otherwise, use Xi (ε)/ε

vi ).

4.3. A q-reduced form-enhanced algorithm

From an algorithmic point of view, a lazy evaluation process allows to compute a finite value
l ∈ N and L(ε), R(ε) polynomial matrices such that lemma 1 holds up to approximation order
q, i.e.

L(ε)[A0 + A1ε + · · · + Alε
l]R(ε) = diag(. . . , A1,(q)

s (ε), . . . , Ars ,(q)
s (ε), . . .) + o(εq)

is in q-reduced form (see [14, p 160] for details about that lazy evaluation process). The
technique described above leads to the following algorithm (in pseudocode)
v← 0; Tq(ε)← In;

3.1 Apply lemma 1 up to order q to get l, L(ε), R(ε) and
diag(. . . , A1,(q)

s (ε), . . . , A
rs ,(q)
s (ε), . . .) + o(εq) in q-reduced form;

∀s ∈ [v, q], use (15) to deduce θs from diag(A1,(q)
s (ε), . . . , A

rs ,(q)
s (ε));

The roots µsj of the θss give all the first-order terms µsj εs ;
Update Tq(ε) with R(ε);

3.2 For each µsj εs do
if s < q then v← s + 1 and call step 3.1 with Aj,(q)

s (ε)− µsj εs .
At this point, all the eigenvalues λ(ε) of A(ε) have been approximated by some λ(q)(ε)

up to order q. A finite number of terms of the series A(ε) has been used and we did not need a
brute force computation of its characteristic polynomial. Moreover, the transformation matrix
Tq(ε) computed so far contains the result of step 1.3 (see equation (12)). Indeed, the columns
of Tq(ε) are approximations up to order (at most) q of the eigenvectors associated with the
λ(ε). Therefore, approximations of both the perturbed eigenvalues and eigenvectors can be
computed simultaneously using successive appropriate q-reduced forms. The way Tq(ε) is
updated at each recursive call is detailed in [7].

4.4. Application to the physical problem

The algorithm presented in the previous section has been implemented in a MAPLE V R4
package called pert. The pert package contains functions pert reduce and eigenvects.
The first one performs steps 3.1 and 3.2 and the second just collects the eigenvector
approximations from Tq(ε). Moreover, this package heavily relies on the ISOLDE package.
ISOLDE has been designed by E Pflügel [14] for the symbolic resolution of linear differential
systems†. What follows is a MAPLE session example to ilustrate how the algorithm proposed
in section 4.3 can be used to diagonalize the modified Kane matrix up to a given order (here
q = 2). Remark that pert reduce returns for each eigenvalue approximation, both its
multiplicity m and the corresponding block As,(q)

j (ε) (written Asjq in the MAPLE format).
For more legibility, the option float of eigenvects may be used, which simply applies
evalf (with the 10 digits MAPLE standard) to the approximate eigenvector.

† Both these MAPLE packages are available at http://www-lmc.imag.fr/lmc-cf/Claude-Pierre.Jeannerod/.
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> with(ISOLDE):

> with(pert);

[eigenvects, pert reduce]

> read modified_kane: # A:= the modified Kane matrix

> pert_reduce(A,k,2);

[[ 3
2 + 1485 273 112 982 604 473 329

20 340 266 872 042 221 000 k
2, 2, A012], [− 42 741 506 602 974 173

1019 840 291 319 369 k
2, 2, A212],

[− 4953
500 k

2, 2, A222], [− 17
50 − 90 943 555 623 193 439

4164 021 419 571 754 k
2, 2, A022]]

The corresponding eigenvector approximations are:

> eigenvects(A012,k,float);

[[0,−5.417 666 574k + 446.257 0204k3, 0, 1., 0, 66.559 545 43k2, 0, 0],

[−5.417 666 574k + 446.257 0204k3, 0, 1., 0,−66.559 545 43k2, 0, 0, 0]]

> eigenvects(A212,k,float);

[[1., 0, 5.417 666 574k − 238.392 1690k3, 0, 3.122 990 850k

−105.516 6635k3, 0, 0, 0],

[0, 1., 0, 5.417 666 574k − 238.392 1690k3, 0,−3.122 990 850k

+105.516 6635k3, 0, 0]]

> eigenvects(A222,k);

[[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]

> eigenvects(A022,k,float);

[[−3.122 990 850k − 163.417 5096k3, 0, 49.640 222 30k2, 0, 1., 0, 0, 0],

[0, 3.122 990 850k + 163.417 5096k3, 0,−49.640 222 30k2, 0, 1., 0, 0]].

Conclusion

We have proposed a MAPLE package to solve the symmetric perturbed eigenvalue problem
in the case of analytic matrices. When compared with the classical algebraic method, our
approach turns out to be more efficient in the sense that it does not require computation of
the characteristic polynomial of the matrix series. This is important when dealing with large
matrices (n = 50) and/or high degree or analytic perturbations and when the approximation
order is small, namely q = 2. Also, it solves the problem completely by simultaneously
approximating both the perturbed eigenvalues and eigenvectors up to any order. The pert
package will be used to diagonalize various modified Kane matrices which differ by matrix Q
(see equation (5)).
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[10] Löwdin P O 1951 A note on the quantum-mechanical perturbation theory J. Chem. Phys. 19 1396–401
[11] Monagan M share/linalg/eigen/eigen.mws MAPLE V, Release 5 (Waterloo Inc)
[12] Moro J, Burke J V and Overton M L 1997 On the Lidskii–Vishik–Lyusternik perturbation theory for eigenvalues

of matrices with arbitrary Jordan structure SIAM J. Matrix Anal. Appl. 18 793–817
[13] Moser J 1960 The order of a singularity in Fuchs’ theory Math. Z. 379–98
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